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SOLVING SYSTEMS OF NONLINEAR EQUATIONS ON
A MESSAGE-PASSING MULTIPROCESSOR*

THOMAS F. COLEMANt AND GUANGYE LI#

Abstract. Parallel algorithms for the solution of dense systems of nonlinear equations on a message-
passing multiprocessor computer are developed. Specifically, a distributed finite-difference Newton method,
a multiple secant method, and a rank-1 secant method are proposed. Experimental results, obtained on an
Intel hypercube, indicate that these methods exhibit good parallelism.
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1. Introduction. In this paper we investigate parallel algorithms, tailored to the
hypercube multiprocessor context, for the solution of systems of nonlinear equations

(1) solve F(x)=0

where F: R" - R". Component i of F is denoted by f;. We assume that F is differenti-
able; let J(x) denote the Jacobian matrix evaluated at point x.

Our implementations are specific to a hypercube multiprocessor; however, the
algorithmic ideas are applicable more generally. In particular, the parallel algorithms
presented here can be tailored to any multiprocessor computer provided that the
communication topology allows for efficient “fan-in” and “fan-out” operations and
the processors themselves have significant local memory. Furthermore, some of our
proposed algorithms—multisecant update, triangular solve—are most meaningful when
a “ring” communication pattern is used; hence, the topology of the multiprocessor
should allow for a ring embedding. Finally, we remark that we always assume that
the dimension of the problem n is greater than the number of processors p; indeed,
the algorithms uniformly become more efficient as n/p increases.

Our ultimate interest is in large sparse problems; however, in this paper we restrict
our attention to the case in which the Jacobian matrix is assumed to be dense.

~Inanutshell, this paper represents our attempt to parallelize the popular globalized
Newton-like approaches to (1), such as secant and finite-difference Newton methods
with a dogleg step or linesearch procedure. Consequently, the algorithms under con-
sideration actually solve the structured minimization problem

(2) minimize {f(x): f(x) =31F(x)"F(x)}.

Obviously a solution to (1) is also a solution to (2); unfortunately, the converse is not
always true. Nevertheless, such algorithms often are used successfully to obtain
solutions to (1).
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We divide the world into two classes of functions: functions F that are most
conveniently evaluated as a single entity (i.e., a single subroutine evaluates the entire
vector function F, sequentially), and functions F that can be evaluated in a distributed,
parallel fashion. In this paper, to be concrete, we restrict the latter category to functions
that conveniently separate into component sequential subroutines for each f;, i=1:n.
We call such functions row-separable.'

If F is to be evaluated as a single entity, then our approach is to distribute copies
of the F-evaluation subroutine to all the processors. We then assume that any node
(processor) can evaluate F(x), given x, with no other communication necessary. Note
that the usual (rank-1) secant method cannot be parallelized in any obvious way since
the evaluation of F(x) is not distributed. If the evaluation of F is cheap relative to
the other computations (e.g., matrix updating, triangular solves, ...) then this poses
no problem—Ilet one node evaluate F while the others remain idle; however, if F is
relatively expensive, then it is not clear how to effectively parallelize the rank-1 secant
method. For this reason we have developed the multisecant method in which each
processor evaluates F at a different point (or perhaps several different points). The
result is a rank-q update, where g is a multiple of the number of processors available.
This approach is discussed in § 5. In the extreme case, when each node is evaluating
F at many different points, the multiple secant method resembles a parallel finite-
difference Newton method. The latter approach is explored in § 4.

When F is row-separable the evaluation of F(x) can be done in parallel. This
allows for an efficient parallel version of the (globalized) rank-1 secant method. The
crucial problem here is the design of the effective parallel QR-updating scheme. We
discuss this in § 3.

Next we briefly describe the salient features of a hypercube computer. See Wiley
[15], for example, for more information.

A message-passing multiprocessor consists of several independent processors
connected by communication links. Each processor has significant local memory. (For
example, the Intel iPSC with extra memory boards has approximately four megabytes
of available memory, per node.) There is also a host computer, connected to one or
several of the nodes (processors), whose purpose is to load programs and data onto
the nodes of the cube, as well as collect the answer; we take the view that the host
does not participate in intermediate computations.

Each processor supports two message-passing primitives: send and receive. When
a node sends an array, it is transported through a sequence of nodes and communication
links—the sequence is usually determined by the operating system—until the target
node is reached. Upon executing a receive, a node checks to see if a new message is
in its buffer. If so, the message is read and execution continues; if not, execution is
suspended (on the receiving node only) until a message arrives.

A hypercube computer is a particular kind of message-passing multiprocessor.
Specifically, the name refers to the topology defined by the communication links.
A zero-dimensional hypercube, or 0-cube, is a single processor. To construct a 1-cube
(i.e., 2 nodes), join two O-cubes with a single communication link. In general, construct
an m-cube (i.e., 2™ nodes) from two m —1 cubes: find a one-to-one correspondence
between the nodes in each cube and add a communication link between each pair.

! We restrict our attention to row-separable functions to provide specific explicit algorithms, and for
purposes of implementation and experimentation. However, the ideas and algorithms developed for row-
separable functions are easily adapted to the general situation: i.e., functions that can be evaluated in a
distributed, parallel manner.
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The hypercube topology allows for a number of interesting properties (e.g., [14]).
A particularly important one, for our purposes, is that a spanning tree of depth m can
be embedded in an m-cube, rooted at any node. This allows for the efficient implementa-
tion of a number of global operations. For example, a node can send information to
every other node in m “timesteps.” This is usually called a broadcast or fan-out
operation. Alternatively, a vector distributed over the cube can be collected onto any
single node (the target node) in m “timesteps” using a spanning tree rooted at the
target node. This is often called a fan-in operation.

Each node has a unique name myid, which is a number in the range [0, p—1]
where p is the number of processors; each node is aware of its own name. We use two
labelings, or assignment of node names. The first is the natural ordering, which is an
assignment of integers in [0, p — 1] such that each neighbor of node i (a neighbor of
node i is a node connected to i by a single communication link) differs by a single bit
in its binary representation of its name. For example, the neighbors of node 5, in a
4-cube, are nodes 4, 7, 1, and 13. A ring ordering is also used. In this case node i is
connected by single communication links to node (i —1) mod p and node (i+1) mod p.
An m-cube always allows for an embedding of a ring on 2™ nodes.

Experimental results reported in this paper were obtained using the Cornell Theory
Center 16-node Intel iPSC hypercube under Xenix 286 release 3.4 of the host operating
system and iPSC release 3.0 of the node operating system. The nodes were equipped
with extra memory boards yielding approximately four megabytes of available memory
per node. All our programs were written in Fortran.

2. The sequential secant algorithm. We begin by summarizing a simplified version
of the Minpack [11] sequential secant algorithm. This algorithm, in turn, is based on
the work of Powell [12].

Suppose x, is the current approximation to a solution of (2) and define F, < F(x,).
Let B, be the current Jacobian approximation and let B. = Q.R, be the QR-factorization
of B.. Assume B, to be nonsingular.

A trial step s is computed by approximately solving the trust region problem

3) minimize {|F, + Bs||3: |s[l.= Ac}

where A, is the current radius of the trust region. The approximate solution s, is
obtained by further restricting (3): specifically, s. solves the problem

(4) minimize {|| F.Bs||3: ||s|l.=A., s€ Pc}

where P, is a piecewise linear path defined as follows: First, connect x, to the Cauchy
point, x,+sS*", where

T 2
(5) sCauchyQ_e_f_ ”Bc FC"2 BTF
c - T 2 (4 (4]
| BB Fe|2
and then connect x, + s$*"™ to the Newton point, x.+ s¢ <"*°", where
(6) s]:ewton déf _B—C-I Fc-

The computation determining the trial step s. boils down to the algorithm in Fig.
1. (Note. newx is a logical input parameter. If newx = false then all quantities in step
1 have not changed since the previous call; otherwise, newx = true and all quantities
have changed values.)

The possible correction s, determined by algorithm Dogleg is accepted (i.e.,
x, < x,+5.) only if | F(x.+s.)|l2<||F(x)|l2. If s is not accepted then A, is reduced
and step 2 of algorithm Dogleg is repeated.
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{1: Compute Cauchy and Newton Steps}
If {newx} then
{Compute s (given Q., R.)}

u<Q!F,;

g<Rlu;

w< QR g;

Cauchy __ _ lellz

c 2g’
"WHZ

{Compute sNevon}

Solve RsNev'°" = —y;
Endif

{2: Solve (4)}
If {||sNe*°"|3=A_} then s, < sNe¥ton

A
Elseif {||sS*"Y||=A_} then s, < (—Cauzhy ) sSauchy
™™,
C: h
Else 5.« scauc y+a(s:lew(on _ S(CZauchy)
where a is the positive root of the quadratic equation
“SSaUChy'i' a(sCNewlon _ SEaUChy)"% = Az

Endif

Fi1G. 1. Algorithm Dogleg.

There must also be a mechanism for increasing A, so that progress is not impeded
by unnecessarily small steps. This is accomplished by comparing the predicted reduction
to the actual reduction. If this ratio, ratio, is sufficiently large then A, is increased.

Besides updating x and A, it is necessary to evaluate F(x.+s.) and update the
QR-factorization of B to reflect the rank-1 secant update (due to Broyden {2]). We
will not go into the QR-updating details here; however, orthogonal rotations can be
used to stably perform this update using a total of 26n> floating point operations (e.g.,
[5]). The algorithm in Fig. 2 is a formalization of the ideas expressed above.

The algorithm described in Fig. 2 represents a simplified version of the Minpack
implementation. For example, Minpack will refresh B by finite-differences when it
appears that convergence is not proceeding rapidly enough. In addition, Minpack will
modify R if singularity is detected. Furthermore, the Minpack “ratio test” and sub-
sequent adjustment of A is somewhat more complicated. We will not spell out these
details in this description since they do not bear significantly on questions of paralleli-
zation. Subscript “c” denotes current: e.g., x, refers to the current point. Subscript
“+” denotes the updated (new) quantity: e.g., x. is the new value of x, x, < x,.+ s..

3. Parallel secant method for row-separable functions.

3.1. The algorithm. As mentioned in § 1, a row-separable function F is defined
to be one in which it is convenient to have available a separate subroutine to evaluate
each fi(x), i=1:n. Assuming row-separability (see footnote 1), we now develop a
parallel Secant/ Dogleg secant method for (1) based on the sequential secant method
described in § 2.

Our general approach is to distribute data and functions around the cube so that
the work in the computationally intensive steps in algorithm Secant/ Dogleg is well
distributed; we are averse to redistributing information if it can be avoided. We make
no attempt to parallelize steps that involve relatively insignificant computational work.
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{0: Initialize}

Choose x,, evaluate F(x.), determine B(x.) by finite differences;
Compute B(x.)= Q.R,

newx < true;

{1: Attempt to find a zero of F(x)}

Repeat
Determine s. by Algorithm Dogleg(newx);
Evaluate F(x.+s.); -

{Compute ratio}
I F(xc+ )3

actred < 1— ;
IFlI3
F.+ Q.R.s.|3
prered<—1—" c Qc zcsc"2;
| Fell2
. actred
ratio « ;
prered
{Update x}

If {ratio =.0001} then x, « x,
Else x, « x.+ 5. Endif

{Update A}

If {ratio =1} then A < 3A,
Elseif {ratio =3} then A, < A,
Else A, <« 2A. Endif

{Update B, newx}
If {x, # x.} then
newx < true,
Update Q.R,~> Q. R, to reflect the rank-1 change:

(LFs— F.]= B.s))sc

’

B,< B.+

S¢S
Else newx < false

Endif
Until {convergence}

FIG. 2. Algorithm Secant.

From our perspective the significant steps in algorithm Dogleg are the matrix-vector
multiplies and the upper triangular solve in Step 1; Step 2 is relatively insignificant
and can be performed on a single node. Beyond the call to Dogleg, the significant
steps in algorithm Hybrid are: the initial finite-difference approximation B, the initial
QR-factorization, the evaluation of F (x.+ s.), matrix-vector multiplies in the computa-
tion of prered, and the update of the QR-factorization.

We distribute F as follows: For i=0: p—1, node i is assigned component sub-
routine f; for each j=i+1(mod p), 1Sj=n. Therefore, to evaluate F(y) each node
must just evaluate its resident component functions: the simple node program is
illustrated in Fig. 3.
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k < myid +1,

While {k = n} do
Evaluate f*(y)
k<k+p

Endo

F1G. 3. Algorithm F-evaluate (node program).

The initial finite-difference determination of B can be accomplished in parallel
using algorithm F-Evaluate as a subroutine. However, it turns out to be convenient to
have the initial B distributed by columns; therefore, given our distribution of F, some
communication is required within the parallel finite-difference method. The basic idea
is to use algorithm F- Evaluate to parallelize the usual column-oriented finite-difference
scheme. This is based, in turn, on the approximation to the jth column of the Jacobian
matrix,

) J(x)ejEF(x+ 1e;) — F(x)

where ¢; is the jth column of the identity matrix and 7 is an appropriate positive scalar.
The node program for the parallel finite-difference approximation is given in Fig. 4.
It is assumed that every node has a copy of x, the current point, and 7, the differencing
scalar. '

Note that each node determines some of the components of column j; the “Fan-in”
step collects column j onto node (j—1) mod p where it is stored.

The initial QR-factorization of B can be accomplished by a parallel column-
oriented algorithm based on orthogonal Householder transformations. Moler [9] has
described the framework for such an algorithm in which the column-distributed matrix
B is overwritten with R and the Householder vectors that define Q. However, our
rank-1 updates require an explicit representation of Q; therefore, we have modified
Moler’s Algorithm to produce a row-distributed Q-matrix, while overwriting B with
the column-distributed matrix R. This modification is rather straightforward and we
will not describe it here; however, in Table 1 of § 3.2 we do provide results of numerical
experiments designed to measure parallel efficiency.

There are numerous matrix-vector multiplies in algorithm Secant/ Dogleg involving
matrices Q, R, Q7, and R”: we have built our (straightforward) routines based on the
communication utility routines provided by Intel [10]. Design of an efficient parallel
triangular solver turns out to be a difficult problem. Nevertheless, there has been
significant recent progress (e.g., [6]-[8], [13]); we use the algorithm of Li and Coleman
[8] in our implementation.

It remains to consider the QR-updating step. Indeed, our decision to crossthread
Q and R—i.e., distribute Q by rows and R by columns—was arrived at with this step
in mind. Hence we assume that if j—1=imod p, 1 =j = n, then node i houses row j

For j=1:n do

{Estimate column j}

y<x+tre;;

F-Evaluate (y)-> w;

Participate in Fan-in of w- node (j—1) mod p;
Endo

Fi1G. 4. Algorithm J-evaluate (node program).
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of Q and column j of R. Let
(8) B,=QR+rsT=Q(R+7s")

where 7= QTr. Assume that 7 is stored on a single node, node 0, say; let sT be
distributed, by column, to conform to the distribution of R.

Recall that the usual sequential algorithm [4] introduces zeros in 7 by applying
orthogonal rotations to its rows, from bottom to top. Each rotation is applied, in turn,
to the two corresponding rows of R and columns of Q. But the distribution we have
chosen for Q and R is ideal for parallelization: each node contains a segment of the
rows of R (and columns of Q) being rotated. Hence, the work involved in the rotation
is well distributed.

Upon complAetion of the step described above we have B+=Oﬁ where é is
orthogonal and R is upper-Hessenberg. Next we must reduce R to upper triangular
form. This is done using orthogonal rotations applied from top to bottom. Rotation
G, is applied to rows i, i+1 of R as well as columns i, i+1 of Q (for i=1:n—1).
Rotation G; involves computations that can be done concurrently because each node
has a segment of rows (columns) i, i+1 of R(0).

Figure 5 provides the detailed algorithm. For each node k, let

9) I(k)={1=i=n:i—1=kmod p}.

Remark. As we have demonstrated, the parallelization of the Secant/ Dogleg
Algorithm is fairly straightforward under a row-separability assumption. The two most

{Reduce to Upper Hessenberg form}
For i=n—-1:1(—1) do
If {myid =0} then
Determine G, ; {Givens rotation defined by F;1;, 7i}
Apply G, to T,
Broadcast G;;
Endif

For each ke I(myid) do
Rotate elements in rows i, i+1 of column k of R, using G;;
Rotate elements in columns i, i+1 of row k of Q, using G;;
Endo
Endo
If {myid =0} then broadcast a ¥ 7, Endif

Add a x s to first row of R;

{Reduce R back to upper triangular form}
Fori=1:n—1do
If {myid = (i—1) mod p} then
Determine G,, based on R;,,;, Ri;; {Givens rotation}
Broadcast G;;
Endif

For each k € I(myid) do
Rotate elements in rows i, i+1 of column k of R, using G;;
Rotate elements in columns i, i+1 of row k of Q, using G;;
Endo
Endo

FIG. 5. Algorithm QR-update (node program).
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challenging steps are the triangular solve and QR-update. Indeed, it is possible to
avoid these two steps altogether if we recur B™' instead of B. This is quite possible
(e.g., [3]) though from a numerical point of view it is probably preferable to update
B. There are two major reasons we do not pursue this possibility here. First, one of
our goals is to determine if the Minpack Algorithm, which includes updating QR-
factors, can be efficiently parallelized. Second, we maintain an eye toward the sparse
case in this development: in general, J~' is dense when J is sparse and therefore
recurring an approximation to J~' is unreasonable in the large sparse situation.

3.2. Numerical experiments. In Table 1 we present timing results reflecting the
performance of the QR-updating Algorithm described in Fig. 5, and, for comparison,
the QR-factorization routine (which we have not described in detail here) and the
triangular solve. Note that even though both the QR-update and the triangular solve
are O(n®) operations, the efficiency of the rank-1 update is much better than the
triangular solve efficiency. This is due to the constant factors involved: i.e., the
QR-update requires 26n° arithmetic operations, whereas the triangular solve involves
1n? arithmetic operations. Moreover, the efficiency of the update is not dramatically
worse than for the full factorization that, in turn, exhibits close to optimal megaflop
rate. The near-maximum efficiency of the QR-factorization is due to the intensive
computational work required (recall that the orthogonal matrix Q is being explicitly
formed).

In Table 2 we present the running times for our parallel implementation of the
secant algorithm described in § 2. Our stopping criterion was || F|| =107°%; the “update
A step was modified to conform with the Minpack code. Problem 15 is the well-known
extended Rosenbrock function; the other problems were chosen from the Minpack
collection of nonlinear equation problems.

To provide a measure of speedup, in Table 3 we have divided the numbers in
Table 2 by the sequential running times of a modified Minpack code running on a

TABLE 1
Timing results for the parallel secant update, p = 16.

QR QR Update Update Solve Solve
n time mflps time mflps time mflps
100 7.2 458 .995 261 .70 .028
200 51.3 52 2.6 .39 13 .06
300 166.0 .54 5.6 46 22 .08
TABLE 2

Running times for the parallel secant algorithm.

Problem p n =50 n =100 n =300
9 1 20.5 128.27 2494.7

9 16 5.54 15.6 162.0

10 1 60.14 418.6 10264.3

10 16 9.4 36.7 643.9

14 1 92.6 397.0 5210.3

14 16 40.19 89.2 468.7

15 1 193.14 945.1 13121.2

15 16 85.7 2279 1445.5
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TABLE 3
Speedup for the parallel secant method, p = 16.

Problem n=>50 n=100 n =300
9 3.8 8.2 15.4
10 6.4 11.4 159
14 23 45 11.1
15 225 4.1 9.1

single processor. The Minpack code was modified to force secant updates (after the
initial finite-difference Jacobian estimation). Moreover, the Minpack stopping criteria
were replaced by the rule mentioned above. Hence the two codes produce exactly the
same sequence of x-iterates (we verified that this claim held on the four test problems
in question).

Remarks. (1) Obviously speedups improve as n increases. This is due to the
increase in distributed work to be performed.

(2) Problems 9 and 10 require only unit steps each iteration; on the other hand,
problems 14 and 15 require many nonunit steps—many trial steps are rejected. It is
this fact, in combination with the fact that function evaluations are extremely cheap
that accounts for the relatively poor parallel efficiency demonstrated on problems 14
and 15.

To support this claim numerically, we have artificially increased the expense of
each function evaluation in problem 14 by a factor of 100. The cost of a function
evaluation is then about the same order of magnitude as the cost of a function evaluation
in problem 10. For p=16 and n =100 the running time is 177.4 compared to 1562.3
when p =1; the resultant speedup is 8.9, which compares favorably to the speedups
obtained on problems 9 and 10. '

The purpose of Table 4 is to provide some indication of how the computing time
is distributed amongst the various tasks. The table entries represent the normalized
time to do each task—for each row, each task time is divided by the time required by
the most expensive task. Column “Int. J/QR” represents the time to do the initial
estimation of J by finite-differences plus the time required to do the initial QR-
factorization. The ‘“F-evaluation” column represents the total time spent on evaluations
of F excluding the initial estimation of J. The column labeled “Other” reflects the
time spent on all remaining tasks. This includes several parallel matrix multiplies (used
in the determination of Cauchy and Newton steps) as well as some sequential work
(such as the adjustment of A).

Problem 14+ is the Minpack problem 14 with the cost of a function evaluation
increased by a factor of 100.

TABLE 4
Secant Algorithm breakdown for p =16, n =100.

Problem Init. J/QR QR-update F-evaluation Tri. solve Other
9 1.0 .26 .07 22
10 1.0 .14 .06 .10

18
.10
14+ 1.0 .28 42 .28 .06
15 .10 1.0 27 .56 40
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It is now easy to see why problem 15 experiences relatively poor speedup: too
little (relative) time is spent on the highly parallel tasks such as the initialization step
and “F-evaluation.” Instead, the QR-update and the triangular solve tasks consume
the most time: unfortunately, neither task is as parallel-efficient as the QR-factorization
or the distributed evaluation of F.

Our numerical experiments indicate to us that the proposed parallel secant method
is acceptably efficient (for both cheap and expensive functions) except when F is
cheap and many iterations are required. Note that many iterations may be required
due to a poor Jacobian approximation; a hybrid routine such as the Minpack Algorithm
would tend to refresh the approximation (e.g., by finite differences) under such
circumstances and this, in turn, would tend to decrease the number of iterations. In
particular, we note that the parallel finite-difference method actually outperforms the
parallel secant method on problems 14 and 15: this is due to many fewer iterations
and (ridiculously) cheap function evaluations.

4. Parallel finite-difference Newton method.

4.1. The algorithm. In the remainder of this paper we assume that the evaluation
of F(x) is not a distributed computation; every node has a copy of the F-evaluation
subroutine. In addition, we discontinue the use of the subscript c; e.g., x and s refer
to vectors x. and s, respectively. The finite-difference approximation of the Jacobian
matrix can obviously be done in parallel, given F(x), with each node computing its
resident columns independently. Communication between nodes is not required. Since
efficient parallel routines for the LU and QR factorizations exist, and since the triangular
solve problem has been extensively researched, with acceptable results, the only
remaining difficulty is the evaluation of F(x+s) when determining if x+s is an
acceptable point. If F is relatively expensive to compute, then it is not reasonable to
designate one distinguished node to evaluate F(x+ s) while the others idle.

Our solution breaks into two parts. First, if in the course of a run previous
experience suggests that the initial trial step s is likely to be accepted, then we take a
chance and overlap the computation of F(x+s) with the estimation of J(x+s). This
is at some risk because s might be determined to be unacceptable—due to the value
of || F(x+ s)||—and then any work expended on the computation of J(x, + s) has been
wasted. But, as indicated in Fig. 6, each node will waste at most one evaluation of F
before the suitability of s is determined.

Assign the task of evaluating F(x+s) to node n mod p (think of F as column
n+1 of the Jacobian): n+1<€ I(n mod p). Figure 6 describes the algorithm.

If {myid = n mod p} then {i.e., if I am the node that evaluates F(x+ s)}
Evaluate F(x+s);
Broadcast F(x+s);
Else
Choose je I(myid);
Evaluate F(x + s+ 7e;);
Endif

If x+ s is not acceptable then exit
Else

Evaluate the remainder of the Jacobian columns by finite differences;
Endif

Fi1G. 6. Algorithm J-and-F-evaluation (node program).
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On the other hand, if previous experience suggests that there is a good chance
that the initial step s will not be adequate, then our strategy is quite different.
Specifically, each step of the parallel linesearch procedure involves p function evalu-
ations, F(w,_,), * - -, F(w,), done in parallel, where w,_,, - - -, w, are points along the
dogleg step P. (see § 2). If the first step is unsuccessful, then a second parallel search
is performed along a smaller segment of P.. This process is repeated until a suitable
point is found. The linesearch procedure is judged successful if the following ‘“‘alpha
condition” is satisfied for some wy e {w,_;," *, wo}:

(10) Jw ) =f(x)+aVf(x) [wy—x],

where 0< a <%, and f(x) % 3| F(x)||3. See Dennis and Schnabel [3] for a discussion
of the “alpha condition.”

The procedure can be considered a parallel generalized bisection algorithm or
perhaps a generalized Armijo rule [1]. In each step we begin with a stepsize bound
of A. Specifically, in the first step

(11) A < min {||s""*°"||, BOUND x XNORM}

where XNORM % max {||x||, TYPX} and TYPX is a positive user-supplied constant
representing the norm of a “typical” x-iterate; BOUND is a positive user-supplied
constant.

In subsequent steps (if needed) A is defined by the (unsuccessful) evaluation point
nearest to x (used in the previous step).

In each step the evaluation points are defined as follows:

A

(12) we P |w=x|=25, i=0:p-1
where v is a positive number strictly greater than unity. The choice of vy is guided by
the following two concerns.

First, y should be chosen so that the point nearest to x, w,_,, is not too close to
x: i.e., We require

A
(13) yp_,z,u,xXNORM

where u is small positive number (usually unit roundoff). We assume BOUND > p.
Obviously expression (13) yields the upper bound on 7,

14) <( A )1/(17—1)
( Y=\ x XNORM

Second, it is usually advantageous to spread the evaluation points so that at least
one point (i.e., w,_,) is on the Cauchy segment (x, x+s*°"]. This leads to the
condition, if ||s<**™|| <A, we require

A aucl
(15) y,,_léllsC "l

However, this condition may lead to a y so large that a very large segment of
gNewton _ Cauchy 4o devoid of function evaluations. Hence we compromise (15) and
require only

. A 1/(p-1)
(16) v = min {(M> ,2}.
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Note that if we assume that
17) |s€2P|| > u x XNORM,

then (14) and (16) are consistent and y> 1. If condition (17) does not hold, then it is
reasonable to stop, claiming optimality.

Figure 7 exhibits the algorithm. The ““Decrease A” step is implemented as follows.
Let p* =p+1; determine y* > 1 satisfying (14) and (16), replacing p with p*. Finally,
assign

A

e

(18) A

The “Fan-in” step determines w*e W={w,_,, - -, wo} such that ||w*—x|| is
maximum and w* satisfies (10). If no such point exists we define w* = x. Determining
if (10) is satisfied at point w; is a simple computation. Specifically, we can write

(19) wi—x= A ?sCauchy_{_ A ngNewton‘

But, Vf TsN"on = | F(x)||2 % ™ and Vf "5 = —g|JTF|| &' » €. (The constant B
is computed when P, is determined.) Therefore,

(20) VfT[wi—=x]=Af 0 +AY 0",

which is a trivial expression to compute on a single node.

The overall procedure is sketched in Fig. 8. Note that we have provided a high-level
global view, as opposed to a node program. The parallelization of each computationally
significant step has been discussed above.

4.2. Numerical results. We performed computational experiments using problems
9, 10, 14, and 15 referred to previously. The standard starting point (Factor=1) was
used in all cases. The stopping criterion was || F|| =107,

Problem 10 is distinguished from the others: F is relatively expensive to compute.
In this sense problem 10 probably represents a more realistic test function. However,
problems 14 and 15 are useful for testing because nonunit steplengths are required,
whereas Newton iterations converge quickly, with unit steps, for problems 9 and 10.

In Table 5 we have recorded the iteration counts and running times obtained for
the finite-difference Newton method described above (e.g., y/z indicates y iterations
taking a total of z seconds); in Table 6 we divide the p =1 running times by the p=4
and p = 16 times to obtain a measure of speedup. In this case we do not compare our
algorithm to a finite-difference version of the Minpack code because we feel such a

Choose A as in 11
Repeat
If {myid =0} then
Determine y > 1 satisfying (14) and (16);
Broadcast y;
Endif
i« myid;
Determine w; € P.: |w;— x| =A4/v';
Evaluate z; %« F( w;);
Participate in fan-in: z > z*, w-> w* on node 0;
Decrease A;
Until f(w,) =f(x)+aVf(x)"[w,—x]

F1G. 7. Algorithm Dogleg-Linesearch (node program).
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Guess an initial x;
Evaluate F(x), J(x);
Assign prev-step < ‘“‘not-Newton”’;,
Repeat
Factor J=LU,;
Determine P,:
Compute s“*"; {see Fig. 1}
Compute s°°%'8; {see Fig. 1}
Determine A; {use (11)}
If {prev-step = Newton™} then
Try algorithm J-and-F;
If {J-and-F is unsuccessful} then
prev-step < ““‘not-Newton”’
Endif
Endif
If {prev-step = “‘not-Newton”’} then
Perform Dogleg-Linesearch;
Evaluate J(x");
Endif
Until {convergence}

F1G. 8. Algorithm Newton with Dogleg-Linesearch.

TABLE 5
Results for the Newton Algorithm with Dogleg-Linesearch.

Problem p n=50 n=100 n =300

9 1 3/7.6 3/43.5 3/911.0

9 4 3/33 3/13.6 3/240.1

9 16 3/3.0 3/7.9 3/79.8
10 1 4/107.9 4/826.8 4/21701.4
10 4 4/30.4 4/220.0 4/5528.2
10 16 4/13.1 4/69.2 4/1447.4
14 1 9/41.1 9/218.2 "~ 9/4050.2
14 4 9/15.5 9/65.7 9/1062.6
14 16 9/12.3 9/33.4 9/344.0
15 1 22/65.0 27/496.3 31/12871.5
15 4 22/30.1 27/158.2 31/3398.8
15 16 11/13.7 12/40.6 14/496.1

comparison would be unfair. Specifically, the Minpack code is QR-based and ours is
LU-based: such a comparison would give meaningless advantage to our method.

Our implementation struggles with problem 15 for small p (relative te its perform-
ance with p=16). This is because our linesearch parameter y was chosen with a
moderately large p in mind. In particular, in a first iteration of the Linesearch Algorithm,
we choose ¥y so that condition (16) is an equality. If a second iteration of the linesearch
is needed, then v is chosen to satisfy condition (14) exactly. This strategy appears to
work quite well for p =16 but can lead to small steps if p is small.

"In Table 6 we have normalized the execution times reported in Table 5: for each
problem divide the execution times in the subcolumn by the p=1 execution time.
Hence the entries in Table 6 reflect the speedup factor over the running time on a
single node.
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TABLE 6
Speedups for the Newton Algorithm with Dogleg-Linesearch.

Problem P n=>50 n =100 n=300

9 4 23 32 3.8

9 16 25 5.5 114
10 4 35 3.8 39
10 16 8.2 119 15.0
14 4 2.7 33 3.8
14 16 2.5 5.5 114
15 4 2.2 31 3.8
15 16 4.7 12.2 259

Remarks on Table 6. (1) For fixed p> 1, the speedup improves as n increases.
The primary reason for this is that as n increases the parallel factorization becomes
increasingly efficient (e.g., [9]).

As Table 7 indicates, the factorization accounts for a significant percentage of the
total computational expense in the test problems.

(2) In general, the 4-processor speeds are closer to optimality (optimal speedup =
4) than the 16-processor speedups (optimal speedup = 16). Again, the primary factor
here is the increased efficiency of the parallel LU-factorization as n/p increases. There
are two exceptions to this trend in Table 6.

First, a nearly optimal speedup is obtained on problem 10, n=300. Table 7
explains this: the Jacobian estimation time dominates the factorization time—parallel
finite-difference is a highly parallel task.

The other exception occurs on problem 15, n =300: a speedup of 25.9 is attained
(considerably better than the “optimal” speedup of 16!). This is possible because the
sequence of points generated is a function of the number of processors used (due to
the linesearch). This dependence contrasts with the Parallel Secant Algorithm described
in the previous section.

In Table 7 we break the total execution time down into the times required by the
different substeps. Each row of Table 7 is normalized so that the maximum entry in
each row is unity.

Except for problem 10, the factorization represents the dominant cost. We believe
this is an anomaly: in practice function evaluations are often quite expensive. However,
in either case, the linesearch and triangular solve times are relatively insignificant.

We are satisfied with the performance of this parallel finite-difference algorithm
that combines a dogleg step with a generalized bisection algorithm. Our experience
on our test collection indicates that the required number of iterations is almost always
fewer than for a dogleg/trust region strategy (i.e., no linesearch). However, we admit
that from an aesthetic point of view the linesearch procedure is unattractive: moreover,

TABLE 7
The Newton Algorithm breakdown for p = 16, n = 300.

Problem Jac. est. Factor Linesearch Tri. solve
9 .08 1.0 .01 .08
10 1.0 11 .02 .01
14 17 1.0 .00 .08

15 .04 1.0 .01 .08
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it is somewhat heuristic in nature and is unrelated to the quadratic model philosophy.
Considering these remarks, it might be preferable, overall, to stick with the usual
dogleg/trust-region philosophy and always employ the algorithm in Fig. 6 to obtain
parallelism. Our experiments indicate this would be slightly less efficient.

5. Parallel multiple secant method.

5.1. The algorithm. The obvious disadvantage to the finite-difference Newton
method discussed in § 4 is that the estimation of the Jacobian matrix can be extremely
time-consuming. This is less true in the parallel context since finite-differencing is a
highly parallel task; nevertheless, it is often unnecessary to obtain such accuracy. The
success of the sequential rank-1 secant method attests to this claim.

Section 3 presented a parallel secant method under the row-separability assump-
tion; however, if F is to be treated as a single entity we do not know how to implement
an efficient rank-1 secant method (when the evaluation of F is expensive). But, it is
possible to fill the gap between rank-1 and rank-n (i.e., finite-difference approximation)
with an efficient parallel rank-g secant method where g is a multiple of p, the number
of nodes.

To introduce the multisecant method let us consider the case when q = p. For the
moment we also assume that our algorithm is purely local: a unit step x* « x+s is
always taken (we consider the general situation later).

Assume that the function value F(x) is known to every node. The first step is to
re-label the nodes so that a ring is induced (i.e., node i is a neighbor of both node
(i+1) mod p and node (i—1) mod p, for i=0: p—1). A gray code mapping can be
used for this purpose (e.g., [10]). Assume that B, is distributed in the usual fashion,
using this labeling. Hence, node j is assigned column k provided k —1=j mod p. Let
s be the correction to x: i.e., x, <« x+s. (We assume for the moment that s will be
accepted.)

The next step is key. Each node evaluates F at a different point. Node 0 evaluates
F(x+5°, where s°=s; node j, 1=j=p—1, evaluates F(x+s’) where s’ is a sparse
projection of s. That is, component i of s’ will be either s; or zero. In particular,

(21) if {i—1=jmod p}or{s¥=0, 0=k <j} then s{=0,
(22) otherwise s = s;.

For example, if p=q=4, n=38§,

(23) so=(51,32, 53, 84, S5, S6, 57, S8),
(24) s'=(s,,0, 53, S4, 55,0, 57, S3),
(25) s*=(s,0,0, 54, 55,0, 0, 55),
(26) 5*=(s,0,0,0, s5,0,0,0).

After evaluation, each node sends a copy of its newly computed function value
to its higher numbered neighbor on the ring. Hence, after this shift, node j will have
the vectors F(x), F(x+s’), and F(x+sY~"™°P) Therefore, if p=qg=4 then in
addition to F(x), each node has the pair of function values listed below:

(27) node 0: F(x+s), F(x+s>),
(28) node 1: F(x+s"), F(x+s),
(29) node 2: F(x+s?), F(x+s"),
(30) node 3: F(x+s?), F(x+s?).

We now demand that each node satisfy its own local secant equation.
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Notation. For a matrix M let M, ;, denote the matrix of the same dimensions
that matches M in columns I(j) and whose other columns are zero columns. For
j=1: p—1 the secant equation for node j is

(31) Bipl(x+s)—(x+5')]=y’

where y’ & F(x+s’')— F(x+s’). Equation (31) is reasonable because (s’~! —s/), #
0=>ie I(j) and

(32) {I Ji([x+s]+7[s 1 =57]) d’r} (s =57y =y’

0

On node 0 we demand satisfaction of the secant equation
(33) BT(O)[SP_I]"")’O

where y° & F(x+s?7")— F(x).
This requirement is also reasonable because s”~' # 0=>i € I{0), and

1
(34) {I Jio(x+7sP7Y) d'r} sPT =90

0

Of course “‘reasonableness” does not establish that the method possesses desirable
local convergence properties. We will consider this theoretical question elsewhere [16].

An important property of this parallel multisecant update is that there is very little
communication required: each node sends (receives) exactly one vector to (from) an
adjacent node. Moreover, beyond satisfying p local secant equations, the updated
matrix B also satisfies the global secant equation

(35) B's=y

where y %f F(x+s)— F(x). To see this note that

(36) TSP+ Bioy(s0— 5"+ -+ B ,1)(sP 2 —sP )= B*s
and

(37) Yo+ -+yP '=F(x+s)—F(x)=y.

Figure 9 summarizes the node program representing the algorithm sketched above.

Jj< myid;

Evaluate F(x+s’);

Send a copy of the vector F(x+s’) to node (j+1) mod p;

Receive a copy of the vector F(x+ s~ ™?) from node (j—1) mod p; .

If {myid =0} then
'« F(x+sP™") = F(x);

d’<s?7l

Else
yie F(x+s/™") = F(x+s);
dlesiTt =5,

Endif

{Update resident columns}
If {d’ # 0} then

(y'—Bd’)d’"
Bijh« Bipt——7;7

di'al
Endif

F1G. 9. Multiple secant update (node program).
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Note that the product Bd’ can be computed entirely locally on node j: the vector d’
has nonzero components only in locations corresponding to columns residing on node
j (i.e., the nonzero columns in Bj;)).

Two subtopics remain to be discussed: the generalization of the multisecant method
to the case where g is a multiple of p, and the globalization strategy.

The generalization of the multisecant method to the case where g is a multiple
of p is quite straightforward. Divide the columns on each node into q/p groups
(typically with as many equal-sized groups as possible). Each group accounts for one
evaluation of F; alocal secant equation is defined with respect to each group. Otherwise,
the method is the same as the p = g case except now the ring is viewed as having g
conceptual nodes. Note that the number of transferred messages between physical
nodes remains at p (neighbor-to-neighbor, each message of size n).

Globalization can be achieved in a manner similar to the parallel finite-difference
algorithm. Indeed, the only change is to replace the finite-difference Jacobian calcula-
tion with the local secant update. With this exception, the algorithm described in Fig.
8 can be used unaltered.” We note that if p = g and Newton steps are being successfully
used, then each node is involved in exactly one F-evaluation per iteration (in each
Newton iteration there are p F-evaluations). However, when the secant update follows
a linesearch there is a slight redundancy. Specifically, after the linesearch procedure
is completed the value F(x") is known. But the local secant update requires only p —1
additional F-evaluations beyond F(x"). Therefore, under these circumstances either
one node remains idle during the parallel evaluation of F for the multiple secant
update, or F (x*) is computed twice.

5.2. Numerical results. Experimentally we compared the multisecant method to
the parallel finite-difference procedure discussed in § 4 using problems 9, 10, and 14
of the Minpack collection and the extended Rosenbrock function (problem 15). Table
8 provides the results. (Table entry y/z indicates y iterations taking a total of z seconds.)

TABLE 8
The multisecant method versus the finite-difference Newton method, p = 16.

Problem Method n=50 n=100 n =300
9 MS 3/4.6 3/12.3 3/140.9
9 FD 3/3.0 3/7.9 3/79.8
10 MS 4/12.4 4/46.6 4/733.6
10 FD 4/13.1 4/69.2 4/1447.4
14 MS 20/32.4 23/99.3 23/1175.8
14 FD 9/12.3 9/33.4 9/344.0
15 MS 21/35.2 25/101.9 41/1912.6
15 FD 11/13.7 12/40.6 14/496.1

In general, the secant method requires more iterations. Therefore, when the
factorization is the dominant cost—as it is in problems 9, 14, and 15—then the parallel
finite-difference Newton method is faster. However, when F is expensive—as it is in
problem 10—the multisecant method is probably preferable. Indeed, we have tried

2 The remarks concerning linesearch versus trust region, made at the end of the previous section, are
applicable to the globalized multisecant method as well.
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problem 14+ (i.e., increase the expense of a function evaluation in problem 14 by a
factor of 100) with n=100: the multisecant then requires 405.5 seconds compared to
551.1 required by the parallel finite-difference method.

To determine where the algorithm spends most of its time, on this test collection,
Table 9 provides a breakdown of the total execution time.

Table 9 is fairly similar to Table 7, however, the factorization cost for problem
10 is relatively more expensive (.38 versus .11). This is because the dominant cost—
Jacobian estimation—has decreased considerably. In a similar vein, the relative
Jacobian costs have almost become insignificant in problems 9, 10, and 15.

As mentioned above, the multisecant method can allow for the independent
estimation of several groups per node (as opposed to just one group per node). In
Table 10 we provide results indicating the effect of varying the number of groups, g,
per node.

The results are as expected. For problem 10 the computational expense increases
as q increases. This is because of the expensive nature of F (and the number of
iterations stays constant). Problem 15 exhibits exactly the opposite behavior: as g
increases the execution time decreases. The reason for this is that the number of
iterations decreases as g increases: this is reasonable since the Jacobian approximations
become increasingly accurate as g increases. In general then, the optimal q will depend
on the particular problem: the relative costs of evaluating F, factoring the matrix, and
the convergence dependence on g, play a role.

6. Conclusions. We have proposed parallel algorithms for the solution of systems
of nonlinear equations F(x)=0. The algorithms are applicable on local-memory
multiprocessors (such as a hypercube computer) provided that each processor has
significant memory and computational power and the problem dimension is greater
than the number of processors.

TABLE 9
The Multisecant Algorithm breakdown for p =16, n = 300.

Problem Jac. est. Factor Linesearch Tri. solve
9 .04 1.0 .00 .07
10 1.0 .38 .04 .02
14 .05 1.0 .00 .06
15 .02 1.0 .01 .07
TABLE 10

Multisecant: Vary # groups-per-node, p =16, n = 300.

Problem # groups-per-node # iterations Total time
10 1 4 733.6
10 2 4 804.7
10 4 4 932.4
10 8 4 1087.2
15 1 41 1912.6
15 2 40 1679.8
15 4 29 1003.6
15 8 21 853.6
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When F is efficiently computable in a distributed parallel manner, the globalized
rank-1 secant method can be efficiently parallelized. Specifically, it is possible to
parallelize the Minpack implementation, updating the QR factorization of an approxi-
mate Jacobian matrix every step. On balance we are satisfied with the parallel perform-
ance of our global parallel secant implementation. However, it should be noted that
we have efficiently distributed and parallelized the F-subroutines in our experiments.
In general such a task falls to the user and speedup will be strongly affected by the
user’s success in this task. Note that distributing F by rows, even if feasible, does not
always lead to the most efficient distribution of work since it does not exploit the
presence of common expensive subexpressions.

Since it is not always possible to efficiently parallelize the computation of F, we
have developed parallel finite-difference and multisecant methods. In general it is
difficult to achieve good speedup, relative to the sequential rank-1 secant method, for
this class of functions; however, the finite-difference algorithm is efficiently parallelized
and the multisecant method will generally improve on this (especially for large n/p).
It is perhaps possible to further improve on the efficiency of the multisecant method
by incorporating parallel multirank updates to the current distributed QR factorization.
We have not yet investigated this possibility.

Finally, we note that sparse systems are partially separable (i.e., each component
function depends only on a few variables); therefore, in theory, it is usually possible
to effectively evaluate F(x) in a distributed parallel manner. Hence, it may be possible
to efficiently solve large sparse systems of nonlinear equations using a parallel sparse
secant method.
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